Characterizations of left orders in left Artinian rings

V. V. Bavula (University of Sheffield) *

*talk-genGoldie-12.tex

 ${\it R}$ is a ring with 1,

 $\mathcal{C} = \mathcal{C}_R$ is the set of regular elements of R,

 $Q = Q_{l,cl}(R) := C^{-1}R$ is the **left quotient ring** (the **classical left ring of fractions**) of R (if it exists),

n is a prime radical of R and ν is its nilpotency degree ($\mathfrak{n}^{\nu} \neq 0$ but $\mathfrak{n}^{\nu+1} = 0$),

$$\overline{R} := R/\mathfrak{n} \text{ and } \pi : R \to \overline{R}, \ r \mapsto \overline{r} = r + \mathfrak{n},$$

 $\overline{\mathcal{C}} := \mathcal{C}_{\overline{R}}$ is the set of regular elements of \overline{R} ,

 $\overline{Q} := \overline{\mathcal{C}}^{-1}\overline{R}$ is its left quotient ring,

$$\mathcal{C}' := \pi^{-1}(\overline{\mathcal{C}}) := \{ c \in R \mid c + \mathfrak{n} \in \overline{\mathcal{C}} \},\$$

 $Q' := \mathcal{C}'^{-1}R.$

2

A ring R is a **left Goldie ring** if

(i) R satisfies ACC for left annihilators,

(ii) R contains no infinite direct sums of left ideals.

Thm (Goldie, 1958, 1960). A ring *R* is a semiprime left Goldie ring iff it has an Artinian left quotient ring which is semi-simple.

Lessieur and Croisot (1959): prime case.

Question: When Q does exist and is a left Artinian ring?

Answer: Small (1966), Robson (1967), Tachikawa (1971), Hajarnavis (1972) and Bavula (2012).

In all the proofs of the criteria above Goldie's Thm is used.

Theorem. Let A be a left Artinian ring and \mathfrak{r} be its radical. Then

- 1. The radical \mathfrak{r} of A is a nilpotent ideal.
- 2. The factor ring A/\mathfrak{r} is semi-simple.
- 3. An A-module M is semi-simple iff $\mathfrak{r}M = 0$.

4. There is only finite number of non-isomorphic simple *A*-modules.

5. The ring A is a left noetherian ring.

Robson's Criterion.

Let W be the sum of all the nilpotent ideals of the ring R.

Theorem (Robson, 1967). TFAE

1. The ring R has a left Artinian left quotient ring Q.

2. (a) The ring R is W-reflective,

(b) the ring R is W-quorite,

(c) R/W is a left Goldie ring,

(d) W is a nilpotent ideal of R, and

(e) the ring R satisfies ACC on C-closed left ideals.

R is W-reflective if, for $c \in R$, then $c \in C$ iff $c + W \in C_{R/W}$ ($\Leftrightarrow C' = C$).

R is *W*-quorite if, given $w \in W$ and $c \in C$, there exist $c' \in C$ and $w' \in W$ s.t. c'w = w'c.

A l.ideal I of R is C-closed if $cr \in I$, where $c \in C$ and $r \in R$, then $r \in I$.

Robson's Criterion is based on the work of Feller and Swokowski (1961, 1961, 1961) and Talintyre (1963).

Thm (Small's Criterion, 1966, 1966) TFAE

1. R has a left Artinian left quotient ring Q.

2. (a) R is a left Goldie ring,

(b) W is a nilpotent ideal of R,

(c) for all $k \ge 1$, $R/(r(W^k) \cap W)$ is a left Goldie ring,

(d) $r + W \in \mathcal{C}_{R/W} \implies r \in \mathcal{C}$ (i.e. $\mathcal{C}' \subseteq \mathcal{C}$).

Thm (Hajarnavis, 1972) TFAE

1. R has a left Artinian left quotient ring Q.

2. (a) R and R/W are left Goldie rings,

(b) W is a nilpotent ideal of R,

(c) for all $k \ge 1$, $R/r(W^k)$ has finite left uniform dimension,

(d) $r + W \in \mathcal{C}_{R/W} \implies r \in \mathcal{C}$ (i.e. $\mathcal{C}' \subseteq \mathcal{C}$).

His approach is very close to Small's but improvement has been done by using some of the results of Goldie and Talintyre. Suppose that $\overline{R} := R/\mathfrak{n}$ is a *(semiprime) left Goldie ring*.

By Goldie's Thm, $\overline{Q} := \overline{C}^{-1}\overline{R}$ is a semi-simple (Artinian) ring.

The n-adic filtration: $R \supset \mathfrak{n} \supset \cdots \supset \mathfrak{n}^i \supset \cdots$

 $\operatorname{gr} R = \overline{R} \oplus \mathfrak{n}/\mathfrak{n}^2 \oplus \cdots \oplus \mathfrak{n}^i/\mathfrak{n}^{i+1} \oplus \cdots$

For $i \ge 1$, $\tau_i := \operatorname{tor}_{\overline{\mathcal{C}}}(\mathfrak{n}^i/\mathfrak{n}^{i+1}) := \{u \in \mathfrak{n}^i/\mathfrak{n}^{i+1} | \overline{c}u = 0 \text{ for some } \overline{c} \in \overline{\mathcal{C}}\}$ is the $\overline{\mathcal{C}}$ -torsion submodule of the left \overline{R} -module $\mathfrak{n}^i/\mathfrak{n}^{i+1}$.

 τ_i is an \overline{R} -bimodule. Then the \overline{R} -bimodule $\mathfrak{f}_i := (\mathfrak{n}^i/\mathfrak{n}^{i+1})/\tau_i$ is a \overline{C} -torsion free, left \overline{R} -module.

There is a unique ideal \mathfrak{t}_i of R s. t. $\mathfrak{n}^{i+1} \subseteq \mathfrak{t}_i \subseteq \mathfrak{n}^i$ and $\mathfrak{t}_i/\mathfrak{n}^{i+1} = \tau_i$. Clearly, $\mathfrak{f}_i \simeq \mathfrak{n}^i/\mathfrak{t}_i$.

Thm (B., 2012) TFAE

1. The ring R has a left Artinian left quotient ring Q.

2. (a) The ring \overline{R} is a left Goldie ring,

(b) \mathfrak{n} is a nilpotent ideal,

(c) $\mathcal{C}' \subseteq \mathcal{C}$,

(d) the left \overline{R} -modules \mathfrak{f}_i , where $i \ge 1$, contain no infinite direct sums of nonzero submodules, and

(e) for every element $\overline{c} \in \overline{C}$, the map $\cdot \overline{c} : \mathfrak{f}_i \to \mathfrak{f}_i$, $f \mapsto f \overline{c}$, is an injection.

If one of the equivalent conditions holds then $C = C', C^{-1}\mathfrak{n}$ is the prime radical of the ring Qwhich is a nilpotent ideal of nilpotency degree ν , and the map $Q/C^{-1}\mathfrak{n} \to \overline{Q}, c^{-1}r \mapsto \overline{c}^{-1}\overline{r}$, is a ring isomorphism with the inverse $\overline{c}^{-1}\overline{r} \mapsto c^{-1}r$. **Corollary**. Let R be a left Noetherian ring. TFAE

1. R has a left Artinian left quotient ring.

2. $C' \subseteq C$.

3. For each element $\alpha \in \overline{C}$, there exists an element $c = c(\alpha) \in C$ such that $\alpha = c + \mathfrak{n}$.

 $1 \Leftrightarrow 2$ is due to Small (1966).

Corollary. Let R be a commutative ring. TFAE

1. The ring R has an Artinian quotient ring.

2. (a) The ring \overline{R} is a Goldie ring.

(b) \mathfrak{n} is a nilpotent ideal.

(c) $C' \subseteq C$.

(d) The \overline{R} -modules \mathfrak{f}_i , $1 \leq i \leq \nu$, contain no infinite direct sums of nonzero submodules.

3. (a) The ring \overline{R} is a Goldie ring.

(b) \mathfrak{n} is a nilpotent ideal.

(c) For each element $\alpha \in \overline{C}$, there exists an element $c = c(\alpha) \in C$ such that $\alpha = c + \mathfrak{n}$.

(d) The \overline{R} -modules \mathfrak{f}_i , $1 \leq i \leq \nu$, contain no infinite direct sums of nonzero submodules.

12

4. *R* is a Goldie ring and $C' \subseteq C$.

5. *R* is a Goldie ring and, for each element $\alpha \in \overline{C}$, there exists an element $c = c(\alpha) \in C$ such that $\alpha = c + \mathfrak{n}$.

 $1 \Leftrightarrow 4$ P. F. Smith (1972).

Associated graded ring

Theorem (B., 2012) Let R be a ring. TFAE

1. The ring R has a left Artinian ring left quotient ring Q.

2. The set \overline{C} is a left denominator set in the ring gr R, \overline{C}^{-1} gr R is a left Artinian ring, \mathfrak{n} is a nilpotent ideal and $\mathcal{C}' \subseteq \mathcal{C}$.

3. The set \overline{C} is a left denominator set in the ring gr R, the left quotient ring $Q(\operatorname{gr} R/\tau)$ of the ring gr R/τ is a left Artinian ring, \mathfrak{n} is a nilpotent ideal and $\mathcal{C}' \subseteq \mathcal{C}$.

If one of the equivalent conditions holds then $\operatorname{gr} Q \simeq Q(\operatorname{gr} R/\tau) \simeq \overline{\mathcal{C}}^{-1} \operatorname{gr} R$ where $\operatorname{gr} Q$ is the associated graded ring with respect to the prime radical filtration.

Criteria similar to Robson's criterion

Theorem (B., 2012) Let R be a ring. TFAE

1. The ring R has a left Artinian left quotient ring Q.

2. (a) The ring \overline{R} is a left Goldie ring.

(b) \mathfrak{n} is a nilpotent ideal.

(c) $C' \subseteq C$.

(d) If $c \in C'$ and $n \in \mathfrak{n}$ then there exist elements $c_1 \in C'$ and $n_1 \in \mathfrak{n}$ such that $c_1n = n_1c$.

(e) The ring R satisfies ACC for C'-closed left ideals.

A left quotient ring of a factor ring

Theorem (B., 2012) Let R be a ring with a left Artinian left quotient ring Q, and I be a C-closed ideal of R such that $I \subseteq \mathfrak{n}$. Then

1. The set $C_{R/I}$ of regular elements of the ring R/I is equal to the set $\{c + I | c \in C\}$.

2. The ring R/I has a left Artinian left quotient ring Q(R/I) and the map $Q/C^{-1}I \rightarrow Q(R/I)$, $c^{-1}r + C^{-1}I \mapsto (c+I)^{-1}(r+I)$, is a ring isomorphism with the inverse $(c+I)^{-1}(r+I) \mapsto$ $c^{-1}r + C^{-1}I$.